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Report

Bias toward the Null Hypothesis in Model-Free Linkage Analysis Is Highly
Dependent on the Test Statistic Used
Heather J. Cordell
Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom

Recently, it has been suggested that traditional nonparametric multipoint-linkage procedures can show a “bias”
toward the null hypothesis of no effect when there is incomplete information about allele sharing at genotyped
marker loci (or at positions in between marker loci). Here, I investigate the extent of this bias for a variety of test
statistics commonly used in qualitative- (“affecteds only”) and quantitative-trait linkage analysis. Through simu-
lation and analytical derivation, I show that many of the test statistics available in standard linkage analysis packages
(such as Genehunter, Merlin, and Allegro) are, in fact, not affected by this bias problem. A few test statistics—
most notably the nonparametric linkage statistic and, to a lesser extent, the Aspex-MLS and Haseman-Elston
statistics—are affected by the bias. Variance-components procedures, although unbiased, can show inflation or
deflation of the test statistic attributable to the inclusion of pairs with incomplete identity-by-descent information.
Results obtained—for instance, in genome scans—using these methods might therefore be worth revisiting to see
if greater power can be obtained by use of an alternative statistic or by eliminating or downweighting uninformative
relative pairs.

In a recent article, Schork and Greenwood (2004) dem-
onstrated a “bias” that can occur in nonparametric
(model-free) linkage analysis when relative pairs whose
identity-by-descent (IBD) allele sharing is uncertain are
kept in the analysis and are assigned expected values for
IBD sharing. Since these expected values are calculated
under the null hypothesis of no linkage, this results in
a “dilution” of the data set, with regard to the evidence
for linkage that it provides, and a consequent “dragging
down” of the linkage test statistic. Schork and Greenwood
(2004) recommend one easy solution: simply remove un-
informative relative pairs from the analysis; however, they
point out that, in practice, it can be difficult to decide
which relative pairs to remove if the pairs are not com-
pletely uninformative, since one would have to make a
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potentially arbitrary decision about what level of infor-
mativity to use as a cutoff for a pair to be included/
excluded. Other solutions recommended are to increase
the overall informativity by use of a denser genetic map
or to consider the use of more complicated test proce-
dures (such as procedures that downweight uninforma-
tive relative pairs in some way) or by use of appropriate
mixture models. In light of their findings, Schork and
Greenwood (2004) recommend that researchers who
have conducted linkage studies in the past and who ig-
nored or were not aware of the bias problem should
perhaps revisit their analyses.

Although the conclusions of Schork and Greenwood
(2004) might seem disturbing, their conclusions result, in
part, from consideration of the particular test statistic
that they chose to investigate. Schork and Greenwood
(2004) defined a likelihood-ratio test statistic—or LOD
score—based on a multinomial distribution for IBD shar-
ing, and they demonstrated that “adding in” expected
IBD observations from pairs that are, in fact, uninforma-
tive will dilute this test statistic toward the null. How-
ever, the test statistic Schork and Greenwood (2004)
considered does not, in fact, precisely correspond to the
test statistics available in many standard genetic linkage
analysis packages, such as Genehunter (Kruglyak and
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Lander 1995; Kruglyak et al. 1996), Allegro (Gudbjarts-
son et al. 2000), Merlin (Abecasis et al. 2002), or Aspex.
These packages already calculate test statistics that make
some allowance for uncertainty in IBD sharing. There-
fore, it is of interest to examine whether use of these
more complicated (but nevertheless fairly standard) test
statistics correct the bias problem noted by Schork and
Greenwood (2004).

A variety of test statistics have been proposed for per-
forming nonparametric (model-free) linkage analysis with
affected sib pairs. Here, I will concentrate on those that
are best known and available in the standard packages
mentioned above.

A likelihood-ratio test statistic for linkage in affected
sib pairs can be derived as follows (Risch 1990a, 1990b,
1990c; Holmans 1993). Let M denote the observed
marker genotype data for a family consisting of two
siblings plus parents, let A denote the event that both
siblings are affected with some disease of interest, and
let denote the event that the siblings share iIBD p i
alleles IBD at some position in the genome. Then the
likelihood contribution for the jth sib pair, conditional
on the ascertainment scheme (i.e., on the fact that both
sibs are affected), is

2

P(MFA) p P(MFIBD p i,A) # P(IBD p iFA)�
ip0

2

p P(MFIBD p i) # P(IBD p iFA)�
ip0

2 P(IBD p iFM)P(M)
p # P(IBD p iFA)�

P(IBD p i)ip0

pij∝ z ,� ifi ij

where is a vector of parameters representing the prob-zi

abilities that an affected sib pair shares , 1, or 2i p 0
alleles IBD, is the prior probability (given relationshipfij

only), and the posterior probability (given relationshippij

and observed marker data) that sib pair j shares i alleles
IBD. For a sib pair, these prior probabilities are just

, and the posterior prob-f p 0.25, f p 0.5, f p 0.250j 1j 2j

abilities may be calculated, given the observed marker
data, using programs such as Genehunter, Allegro, or
Merlin.

An overall maximum LOD score (MLS) test statistic
may be defined as

ˆ ˆ ˆL(z , z , z )0 1 2MLS p log ,10 L(0.25, 0.5, 0.25)

where represent the maximum-likelihood es-ˆ ˆ ˆ(z , z , z )0 1 2

timates of the sharing parameters, and the likelihood (for
the entire sample of sib pairs) may be written as

2 z p z p z p z pi ij 0 0j 1 1j 2 2jL ∝ p � � . (1)�� � ( )
j f j f f fip0 ij 0j 1j 2j

Note that, for completely informative data (i.e., when
the IBD sharing is known with certainty), this MLS sta-
tistic is identical to the statistic considered by Schork and
Greenwood (2004). However, the statistics differ with re-
gard to the treatment of uninformative pairs. If a pair
is completely uninformative, so that the posterior prob-
abilities are , then,p p 0.25, p p 0.5, and p p 0.250j 1j 2j

in the MLS statistic, the posterior and prior probabilities
cancel out, and the likelihood contribution for the pair
is , giving a log-likelihood contribution of 0,� z p 1ii

so that the pair makes no contribution to the resulting
likelihood-ratio test statistic. For the MLS statistic, there-
fore, it should make absolutely no difference whether
the pair is included in the calculation.

The MLS statistic defined above may be calculated in
Genehunter with the “estimate” command. Genehunter
uses a restricted maximization, proposed by Holmans
(1993), that restricts the values of the sharing parameters

to values that lie in a possible triangle con-ˆ ˆ ˆ(z , z , z )0 1 2

sistent with genetic segregation. Genehunter can addi-
tionally calculate an MLS that is further restricted to cor-
respond to a situation of “no dominance variance,” which
essentially restricts the value of to equal 0.5. An MLSẑ1

with an unrestricted maximization may be calculated
in the program Aspex. Aspex and Genehunter differ
slightly in the way that the multipoint posterior prob-
abilities are calculated, and this will be seen belowpij

(in the simulation study) to have some importance with
regard to the performance of the two programs in the
presence of uninformative pairs.

Another popular statistic for model-free linkage analy-
sis is the nonparametric linkage (NPL) statistic, available
in such programs as Genehunter, Allegro, and Merlin.
This statistic is based on scoring functions proposed by
Whittemore and Halpern (1994). For a sample consist-
ing solely of affected sib pairs (as opposed to also in-
cluding other types of affected relative pairs), the NPL
statistic is equivalent to a test of the mean proportion
of alleles shared IBD (the “mean test”) proposed by
Blackwelder and Elston (1985). Suppose that, for pedi-
gree i, we have complete information, in the sense that
we know the inheritance vector at a given location onni

the genome. Then, we define a score, , that is based onSi

the number of alleles shared IBD by the affected mem-
bers of the pedigree, and a normalized score,

(S � m )i iZ (n ) p ,i i
ji
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where and are the mean and SD of , respectively,m j Si i i

under the null hypothesis of no linkage, calculated by
enumeration of all possible inheritance vectors (which,
under null hypothesis, are all equally likely), regardless
of whether they are compatible with observed genotype
data. For incomplete data, we instead use a score ,

—
Si

which is the expected value of evaluated over all in-Si

heritance vectors compatible with observed genotype data
(in the correct proportion, given the observed data), and
a normalized score,

—
(S � m )— i iZ p .i

ji

An overall test statistic can be constructed as a weighted
average of the test statistics from the different pedigrees.
Note that, here, we approximate the null SD of by

—
Si

, the null SD of . This is known as the “perfect dataj Si i

approximation” and results in a conservative test (Krug-
lyak et al. 1996; Kong and Cox 1997) when the IBD
sharing is not known with certainty. Because the score

is the expected value of evaluated over the possible
—
S Si i

underlying inheritance vectors (i.e., evaluated over the
possible IBD-sharing configurations), a relative pair for
which IBD sharing is uncertain will still contribute to
the test statistic. The exact contribution depends on the
scoring function used; under one popular scheme (“pairs”
scoring), a sib pair with posterior IBD-sharing prob-
abilities will con-p p 0.25, p p 0.5, and p p 0.250j 1j 2j

tribute exactly the same score as if the pair had been
observed to share exactly 1 allele IBD. It would therefore
seem likely that this NPL test statistic could be affected
by the bias problem suggested by Schork and Greenwood
(2004).

In practice, the bias potentially incurred when using
the NPL test statistic can be avoided by use of two al-
ternative statistics, denoted here as “Z-lin” and “Z-exp,”
which are based on normalized likelihood-ratio ( ) sta-Z lr

tistics. These statistics were originally proposed by Kong
and Cox (1997) to avoid the power loss caused by the
“perfect data approximation” in the NPL approach.
Kong and Cox (1997) construct a likelihood on the basis
of either a linear or exponential model, parameterized
by a parameter d that represents the magnitude of de-
viation from null IBD sharing, and they note that the
score test from the linear or exponential likelihood is
equivalent to the previously proposed NPL method. How-
ever, Kong and Cox (1997) propose testing the null hy-
potheses that with a likelihood-ratio test that isd p 0
based on an exact log likelihood, even in the presence
of missing data and thus uncertain IBD information. The

test statistic is defined asZ lr

ˆ ˆ�Z p sign(d) 2[l(d) � l(0)] ,lr

where denotes the log-likelihood ratio; for ex-ˆl(d) � l(0)
ample, for the exponential model,

ˆl(d) � l(0) p log c (d)E [exp (dZ )Fmarker data] ,� i H i0
i

and is a normalization constant satisfying�1c (d)i

�1c (d) p E [exp (dZ )] .i H i0

Given a sib pair with posterior IBD-sharing probabilities
, the contributionp p 0.25, p p 0.5, and p p 0.250j 1j 2j

can be shown to equal the nor-E [exp (dZ )Fmarker data]H i0

malization constant , and so the contribution to the�1c (d)i

log likelihood from this sib pair will again be 0. For the
statistics, therefore, one would again not expect it toZ lr

make any difference whether the pair is included in the
calculation. Provided a genome screen has been per-
formed using statistics (available in programs suchZ lr

as Allegro, Merlin, and Genehunter-Plus) rather than
with NPL statistics, the bias problem is therefore un-
likely to be an issue. As an alternative, one could use
NPL statistics and derive correct P values by use of simula-
tions, although, for genome screens, such approaches may
be prohibitively time consuming.

To demonstrate the performance of the different test
statistics in practice, I performed a simulation study. I
simulated replicates of 200 affected sib pairs by use of
the same six underlying genetic models considered by
Schork and Greenwood (2004). Initially, I used a single
genetic marker located at the disease locus, and I at-
tempted to analyze replicates in which varying propor-
tions of the 200 sib pairs were assumed to be completely
uninformative (genotypes missing or parents homozy-
gous), with the remaining pairs all completely informa-
tive. However, it proved impossible to compare the per-
formance of the methods when applied to the full data
set (with the uninformative pairs kept in the analysis)
compared with when the uninformative pairs were ex-
cluded from the analysis, because every linkage analysis
package that I tried recognized the pairs that were un-
informative and automatically discarded them from the
analysis! (However, it was possible to output posterior
IBD-sharing probabilities for these pairs, if desired.) It
was encouraging to see that most linkage analysis pack-
ages were able to automatically detect and discard such
pairs, but, in practice, of course, the problem would arise
with pairs that show low informativity in certain chro-
mosomal regions rather than with pairs that are entirely
uninformative. To assess the performance of the statis-
tics, I therefore simulated a more-complex scenario in-
volving three linked markers positioned 100 cM apart,
with the central marker located at the disease locus. The
informative pairs had complete IBD information at each
of the three markers, whereas the uninformative pairs



Table 1

Results from Simulations Performed to Assess Impact of Uninformative Sibling Pairs
on Linkage Analysis for Different Test Statistics

SIMULATION

AND TEST

STATISTICa

DIFFERENCE BETWEEN TEST STATISTICSb BY % UNINFORMATIVE

5% 10% 25% 50%

Mean SE Mean SE Mean SE Mean SE

1:
NPL .1699 .0488 .3461 .0815 .8379 .1400 1.4854 .2458
Z-lin .0004 .0052 �.0006 .0076 �.0006 .0135 �.0004 .0241
Z-exp .0004 .0054 �.0006 .0079 �.0008 .0141 �.0007 .0251
MLS-gh .0012 .0170 �.0018 .0244 �.0028 .0396 �.0024 .0591
MLS-ndv .0012 .0165 �.0018 .0236 �.0023 .0380 �.0019 .0566
MLS-aspex .0395 .1582 .0412 .2232 .1219 .3589 .2583 .5198

2:
NPL .1084 .0449 .2176 .0718 .5214 .1312 .9361 .2618
Z-lin .0004 .0061 .0000 .0087 .0025 .0163 .0001 .0284
Z-exp .0003 .0061 .0000 .0087 .0025 .0165 �.0003 .0286
MLS-gh .0008 .0117 .0003 .0165 .0051 .0303 .0010 .0431
MLS-ndv .0008 .0114 .0003 .0162 .0049 .0292 .0010 .0431
MLS-aspex .0189 .1054 .0268 .1496 .1003 .2762 .1182 .3809

3:
NPL .1323 .0491 .2641 .0754 .6309 .1418 1.0807 .2613
Z-lin .0002 .0069 �.0005 .0094 �.0022 .0152 �.0038 .0267
Z-exp .0002 .0070 �.0005 .0096 �.0023 .0155 �.0039 .0272
MLS-gh .0009 .0159 �.0008 .0224 �.0039 .0319 �.0059 .0469
MLS-ndv .0009 .0154 �.0007 .0216 �.0036 .0307 �.0056 .0448
MLS-aspex .0250 .1450 .0267 .2032 .0479 .2918 .0962 .4135

4:
NPL .0073 .0236 .0141 .0442 .0489 .1180 .0947 .2176
Z-lin �.0005 .0039 �.0016 .0069 �.0009 .0138 �.0018 .0195
Z-exp �.0006 .0052 �.0014 .0083 �.0008 .0156 �.0007 .0265
MLS-gh �.0002 .0024 �.0003 .0031 �.0003 .0056 �.0006 .0094
MLS-ndv �.0003 .0023 �.0003 .0029 �.0003 .0052 �.0009 .0085
MLS-aspex �.0025 .0220 �.0028 .0330 .0007 .0541 �.0050 .0870

5:
NPL .2288 .0741 .4364 .0953 1.0399 .1568 1.8594 .2205
Z-lin �.0003 .0055 �.0006 .0080 .0000 .0151 .0026 .0242
Z-exp �.0003 .0060 �.0006 .0087 .0001 .0163 .0027 .0262
MLS-gh �.0011 .0241 �.0025 .0342 .0002 .0580 .0079 .0767
MLS-ndv �.0011 .0233 �.0024 .0327 .0002 .0565 .0074 .0743
MLS-aspex .0414 .2305 .0737 .3223 .2442 .5281 .5341 .6792

6:
NPL .1128 .0400 .2175 .0632 .5218 .1386 .9335 .2714
Z-lin �.0008 .0061 �.0017 .0091 �.0021 .0149 �.0016 .0266
Z-exp �.0008 .0062 �.0017 .0092 �.0021 .0151 �.0015 .0268
MLS-gh �.0018 .0124 �.0039 .0190 �.0029 .0281 �.0006 .0411
MLS-ndv �.0018 .0121 �.0038 .0183 �.0028 .0270 �.0008 .0398
MLS-aspex �.0060 .1113 �.0121 .1701 .0324 .2543 .1104 .3713

NOTE.—Means and SEs of test statistic are given over 100 replicates.
a Test statistics considered were as follows: NPL p NPL statistic calculated using Allegro;

Z-lin p allele-sharing statistic calculated under linear model, by use of Allegro; Z-exp pZlr

allele-sharing statistic calculated under exponential model, by use of Allegro; MLS-gh pZlr

MLS statistic (“loglike”) calculated using estimate command in Genehunter; MLS-ndv p MLS
statistic (“loglike”) calculated using estimate command, with no dominance variance in Gene-
hunter; and MLS-aspex p MLS statistic on 2 df, calculated using ASPEX.

b The difference between the test statistic achieved when uninformative pairs are removed
from the analysis and that achieved when they are kept in the analysis
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Table 2

Parameter Estimates for Sharing Parameters (z , z , z )0 1 2

under Different Simulation Models, When 50% of Samples Are
Uninformative

SAMPLE

SIZE AND

SIMULATION

TRUE MLS-GH MLS-ASPEX

z0 z1 z2 z0 z1 z2 z0 z1 z2

200:
1 .077 .500 .423 .076 .477 .447 .073 .492 .434
2 .142 .500 .358 .139 .486 .375 .135 .505 .361
3 .119 .500 .381 .127 .477 .397 .122 .493 .384
4 .243 .498 .260 .234 .491 .275 .235 .507 .258
5 .026 .500 .474 .026 .482 .492 .025 .500 .474
6 .144 .500 .356 .144 .479 .377 .139 .496 .365

1,000:
1 .077 .500 .423 .078 .491 .431 .076 .500 .423
2 .142 .500 .358 .142 .493 .365 .140 .501 .359
3 .119 .500 .381 .124 .491 .384 .122 .501 .377
4 .243 .498 .260 .240 .494 .266 .243 .496 .261
5 .026 .500 .474 .027 .489 .484 .026 .497 .476
6 .144 .500 .356 .145 .489 .367 .142 .496 .361

NOTE.—Mean values of the sharing parameters are given over 100
replicates.

had complete information at the two outer (flanking)
markers but no information at the inner (disease) locus.
By use of multipoint methods, these essentially uninfor-
mative pairs could be included in the analysis because
of the very small amount of information coming from
the linked flanking markers.

Table 1 shows the average difference between the test
statistic calculated at the disease locus position, with un-
informative pairs removed from the analysis and the one
calculated with the uninformative pairs kept in the analy-
sis (means and SDs of the difference over 100 replicates).
Results are shown for six test statistics calculated using
the linkage packages Genehunter, Allegro, and Aspex; re-
sults for the NPL statistic were virtually identical among
the packages Genehunter, Allegro, and Merlin, and re-
sults for the Z-lin statistic were virtually identical be-
tween the packages Allegro and Merlin (data not shown).
For every simulation model considered, it can be seen
that the MLS statistics from Genehunter (MLS-gh and
MLS-ndv) and the statistics from Allegro (Z-lin andZ lr

Z-exp) are not affected by the bias problem described
by Schork and Greenwood (2004); it makes no differ-
ence whether the uninformative pairs are removed from
the analysis—on average, there is no difference between
the test statistics. For the NPL statistic (calculated in
either Genehunter, Allegro, or Merlin), however, the bias
problem is quite apparent. In some simulation scenarios,
even a small percentage of uninformative pairs causes
the NPL statistic to be considerably reduced when the
uninformative pairs are retained in the analysis, resulting
in the positive difference between the statistics shown in
table 1. With 50% uninformative pairs, the effect is quite
pronounced; for example, in simulation scenario 5, the
NPL is reduced by 1.86, on average, when the pairs are
retained compared with when they are discarded. It is
interesting that the MLS statistic calculated using the
“sib_phase” option in Aspex (MLS-aspex) also suffers
to a lesser extent from the bias problem, suggesting that,
in the Aspex package, the calculation of this statistic in
the presence of incomplete IBD information differs from
the calculation as described here (eq. [1]) and performed
by Genehunter.

For a statistician, the concept of “bias” usually applies
to parameter estimates rather than to test statistics; in
particular, it refers to whether the expected value of a
parameter estimate obtained from some analysis proce-
dure is equal to its true value. For affected-sib-pair stud-
ies, a natural parameterization is in terms of the IBD-
sharing probabilities , conditional on the factˆ ˆ ˆ(z , z , z )0 1 2

that a pair is affected. These sharing probabilities are
functions of the underlying genetic parameters (disease
penetrances and disease-allele frequencies) but, unlike
the underlying genetic parameters, may be estimated
from affected-sib-pair data. Note that the probabilities

are not the same as the average (over pairs;ˆ ˆ ˆ(z , z , z )0 1 2

i.e., over j) of the posterior probabilities , since thepij

posterior probabilities are calculated conditional onpij

the marker data but not conditional on the fact that the
pair is affected. The appropriate way to estimate ˆ(z ,0

is not, therefore, to output and average the pos-ˆ ˆz , z )1 2

terior probabilities but, rather, to use maximum-like-pij

lihood estimation of the likelihood in equation (1). The
only methods considered in the simulation study that
produce maximum-likelihood estimates of areˆ ˆ ˆ(z , z , z )0 1 2

the MLS methods implemented in Genehunter and As-
pex. (The methods implemented in Allegro and Mer-Z lr

lin produce estimates of a different sharing parameter,
d; however, the relationship between d and the under-
lying genetic parameters is unclear.)

Table 2 shows the mean (over 100 simulation repli-
cates) of the parameter estimates as obtainedˆ ˆ ˆ(z , z , z )0 1 2

using the programs Genehunter (MLS-gh) and Aspex
(MLS-aspex), with a sample size of either 200 or 1,000
affected sib pairs and 50% of the sample deemed un-
informative (but retained in the analysis). Even in this
extreme situation with regard to informativity, the pa-
rameter estimates are seen to be essentially unbiased. The
estimates from Genehunter differ slightly from the true
values (i.e., show a very slight bias), as expected from
the fact that Genehunter employs a restricted maximi-
zation under “possible triangle constraints” (Holmans
1993). This means that maximum-likelihood estimates
that fall outside the possible triangle of plausible genetic
values are adjusted to move into the possible triangle,
resulting in a slight bias in this case away from (rather
than toward) the null hypothesis. This effect will dis-
appear asymptotically, as demonstrated by the closer
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correspondence between the estimates and the true val-
ues with the larger sample size of 1,000. The Aspex analy-
sis uses an unrestricted maximization (by use of the
“sib_phase” option with a 2-df test) and shows no dis-
cernible bias for either sample size.

It seems, therefore, as if many of the most popular
methods for affected-relative-pair analysis are not affected
by the bias problem noted by Schork and Greenwood
(2004). A final question of interest is whether nonpara-
metric methods for linkage analysis of quantitative traits
may be affected by the bias. Two widely used methods
for linkage analysis of quantitative traits are the Hase-
man-Elston (H-E) method (Haseman and Elston 1972)
and the variance-components (VC) method (Amos 1994;
Almasy and Blangero 1998). More recent versions of
these methods have included the H-E “revisited” method
(Elston et al. 2000), the “unified” H-E method (Xu et
al. 2000), and an alternative regression-based approach
(Sham et al. 2002). Another approach, proposed by
Kruglyak and Lander (1995), is an expectation-maximi-
zation (EM) version of the traditional H-E method that
allows for uncertain IBD sharing via an EM algorithm,
although this is calculated under the incorrect assump-
tion that the trait difference squared for a pair of siblings
is distributed normally, given IBD sharing.

Table 3 shows the results from simulations performed
to examine the performance of a variety of H-E and VC
methods, when applied to partially informative sib-pair
data. The same complex scenario involving three linked
markers positioned 100 cM apart was used, with the
central marker again located at the trait locus. I consid-
ered two rather extreme genetic models: simulation 1,
in which the variant allele frequency was assumed to be
0.1, with the trait distributed normally with SE 2 and
means 10, 25, or 35 for genotypes with 0, 1, or 2 copies
of the allele, respectively (giving a heritability of 90.5%);
and simulation 2, with variant allele frequency 0.2, with
the trait distributed normally with SE 2 and means 10,
45, or 55 for genotypes with 0, 1, or 2 copies of the
allele, respectively (giving a heritability of 98.7%). Re-
sults are shown for either 200 or 1,000 sib pairs, with
varying proportions assumed uninformative at the trait
locus. Seven test statistics were calculated: the LOD score
(HE-LOD) from a traditional H-E regression performed
in Genehunter; the LOD score (EM-LOD) from an EM
H-E analysis performed in Genehunter; a t statistic
(HE-t) from a traditional H-E regression performed in
the statistical-analysis package Stata, with posterior IBD-
sharing probabilities calculated in Genehunter; a t sta-
tistic (HE-revisited) from an H-E “revisited” analysis
performed in Stata, with posterior IBD probabilities
from Genehunter; a normally distributed statistic (HE-
unified) from a “unified” H-E analysis performed in
Stata, with posterior IBD probabilities from Genehunter;
the LOD score for a regression-based statistic (MR-LOD)

calculated using the program Merlin-Regress; and the
VC-LOD score from a VC analysis, under the assump-
tion of no dominance variance, calculated in either Gene-
hunter or Merlin.

Table 3 shows the average difference between the test
statistic calculated at the trait locus position with un-
informative pairs removed from the analysis and that
calculated with the uninformative pairs retained in the
analysis (means and SDs of the difference over 100 rep-
licates). The H-E methods (including the “revisited” and
“unified” versions) appear to show a slight bias, such that
the analysis with the pairs removed gives a generally
higher test statistic than the analysis with the pairs re-
tained. This bias increases with increasing sample size and
is more severe for the more extreme simulation model
2. The EM version of the H-E method shows bias under
simulation model 1 but negligible bias under simulation
model 2. The VC-LOD and regression (MR-LOD) analy-
ses appear to show no bias for either simulation model.

In the standard H-E method, the sib-pair trait differ-
ence squared is regressed on the estimated proportion
of alleles shared identical-by-descent, , calculated forpj

each pair j from the posterior IBD sharing probabilities
. Under this method, a sib pair with pos-p p p � 0.5pj 2j 1j

terior IBD sharing probabilities p p 0.25, p p 0.5,0j 1j

will contribute exactly the same score asand p p 0.252j

a pair observed to share exactly 1 allele IBD. It would
therefore seem reasonable to think that the H-E statistic
might be adversely affected by the bias problem. The
trait values and thus the difference in trait squared for
the uninformative (and therefore apparently 1-allele-
sharing) pairs will, in fact, come from three different
distributions, according to whether the pair in reality
shares 0, 1, or 2 alleles IBD. The inclusion of these pairs
will increase the variance of the sib-pair trait difference
squared observations around the H-E regression line,
increasing the residual variance and thus the estimated
variance of the regression coefficient. This will decrease
the H-E test statistic, which is equal to the regression co-
efficient divided by its estimated SE.

Although the H-E methods are somewhat affected by
the bias problem, in practice, the bias appears to be very
small, requiring an extreme genetic model and a large
sample size to be discernible. It is interesting that the
regression-based method proposed by Sham et al. (2002)
appears not to be affected by the bias problem. In the
method proposed by Sham et al. (2002), the IBD sharing
is regressed on the trait values (as opposed to the other
way around), by use of a multivariate regression ap-
proach. The calculation involves use of the estimated vari-
ance/covariance matrix for the IBD-sharing estimates be-
tween relative pairs. Use of this variance/covariance ma-
trix appears to adequately correct for the uncertainty in
the IBD sharing caused by marker uninformativity.

In the VC method, the likelihood of the observed phe-
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Table 3

Results from Simulations to Assess Impact of Uninformative Sibling Pairs on Quantitative-Trait
Linkage Analysis for H-E and VC Methods

SAMPLE SIZE,
SIMULATION,
AND TEST

STATISTICa

DIFFERENCE BETWEEN TEST STATISTICSb BY % UNINFORMATIVE

5% 10% 25% 50%

Mean SE Mean SE Mean SE Mean SE

200:
1:

HE-LOD �.0036 .1709 �.0017 .2637 .0331 .4231 .0297 .5449
EM-LOD .0100 .0422 .0153 .0651 .0504 .1173 .0826 .1751
HE-t .0049 .1043 .0114 .1588 .0496 .2741 .0725 .3920
HE-revisited �.0003 .1014 �.0131 .1383 .0135 .2206 .0595 .3191
HE-unified .0045 .1029 .0083 .1590 .0467 .2620 .0919 .3533
MR-LOD �.0001 .0111 .0002 .0150 .0044 .0260 .0044 .0363
VC-LOD �.0039 .1507 �.0148 .2268 .0072 .3462 .0091 .5764

2:
HE-LOD .0307 .2012 .0600 .2759 .1065 .3822 .1305 .4989
EM-LOD .0060 .0358 �.0043 .0606 .0001 .0920 .0045 .1521
HE-t .0278 .0894 .0525 .1248 .1089 .1885 .1734 .2741
HE-revisited .0165 .0619 .0267 .0940 .0848 .1537 .1347 .2214
HE-unified .0263 .0761 .0513 .1128 .1202 .1868 .1992 .2737
MR-LOD .0010 .0127 .0011 .0186 .0024 .0336 .0009 .0490
VC-LOD .0054 .1227 �.0053 .1793 �.0049 .2411 �.0035 .4484

1,000:
1:

HE-LOD .0118 .4077 �.0028 .5489 .0846 .8343 .0939 .9681
EM-LOD .0461 .0797 .0834 .1186 .2252 .2026 .3961 .2946
HE-t .0134 .1139 .0186 .1556 .0671 .2584 .1049 .3643
HE-revisited .0179 .1107 .0163 .1328 .0769 .2421 .1037 .3381
HE-unified .0190 .1063 .0257 .1420 .0990 .2470 .1622 .3265
MR-LOD .0001 .0237 .0010 .0321 .0095 .0495 .0016 .0773
VC-LOD �.0155 .1482 �.0390 .1995 �.0170 .3570 �.0902 .4669

2:
HE-LOD .1241 .4070 .2418 .5189 .4309 .7742 .5345 .7368
EM-LOD .0128 .0510 .0131 .0721 .0450 .1227 .0767 .1574
HE-t .0530 .0834 .1045 .1083 .2167 .1781 .3356 .2126
HE-revisited .0385 .0677 .0662 .0968 .1716 .1426 .2843 .1868
HE-unified .0559 .0770 .1075 .1005 .2356 .1682 .3689 .2025
MR-LOD �.0005 .0285 �.0043 .0395 �.0049 .0647 �.0164 .0884
VC-LOD .0038 .1430 �.0141 .1887 �.0345 .3417 �.0113 .4695

NOTE.—Means and SEs of test statistic are given over 100 replicates.
a Simulation 1: allele frequency p 0.1; trait means p 10, 25, and 35 for 0, 1, 2 copies of allele,

respectively; residual environmental variance p 4. Simulation 2: allele frequency p 0.2; trait means
p 10, 45, and 55 for 0, 1, and 2 copies of allele, respectively; residual environmental variance p
4. Test statistics considered are described in the text.

b The difference between the test statistic achieved when uninformative pairs are removed from
the analysis and that achieved when they are kept in the analysis.

notype data (assuming multivariate normality) is maxi-
mized with respect to underlying genetic mean and vari-
ance parameters, with the IBD sharing between relatives
contributing to the fitted covariance matrix. A sib pair
with posterior IBD-sharing probabilities p p 0.25,0j

will again contribute exactlyp p 0.5, and p p 0.251j 2j

the same score as a pair observed to share exactly 1
allele IBD, but it is not clear to what extent this might
be expected to result in a bias in the linkage test. The
fitted covariance for an uninformative (and therefore
apparently 1-allele-sharing) pair will be either underes-
timated, correctly estimated, or overestimated, accord-

ing to whether the pair in reality shares 2, 1, or 0, re-
spectively, alleles IBD. The contribution of the pair to
the multivariate normal likelihood will be incorrect (for
2 or 0 sharers) with regard to the covariance but correct
with regard to the mean and variance. The assumption
of multivariate normality in the VC approach fixes the
fourth moment (the kurtosis) rather than estimating it
as in the H-E approach (via the estimated variance of
the sib-pair difference squared). It therefore seems rea-
sonable that the VC procedure might be less affected by
the inclusion of the uninformative pairs, and, indeed,
this is what was observed in the simulation study.
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Although the test statistics from the VC analysis do
not show a bias in the sense of a consistent inflation or
deflation of the VC-LOD, it is worth noting that the SEs
of the differences shown in table 3 are quite large. This
indicates that, although the removal of uninformative
pairs does not, on average, increase the LOD score, in
any given simulation replicate (or equivalently, in any
given real data set), the LOD score could be substantially
increased or decreased by removal of these pairs. A simi-
lar effect with regard to the inclusion/exclusion of un-
phenotyped and ungenotyped “edge” individuals in a
VC analysis was noted by Mukhopadhyay et al. (2003).
In my simulations, the maximum inflation in the VC-
LOD was found to be 2.06 from simulation model 2,
and the maximum deflation was found to be 2.13, with
1,000 sib pairs, with 50% deemed uninformative. One
could argue that, in a real study, one would wish to
remove these pairs, since they are contributing, in some
sense, a false increase or decrease in the LOD score, even
though, on average (over a large number of studies), the
LOD score is not affected. These results contrast with
those observed for the MLS and statistics in table 1Z lr

and the regression-based statistic MR-LOD in table 3,
for which the SEs are very small, indicating little differ-
ence between the results when uninformative pairs are
removed compared with when they are retained (any
differences are presumably due to the small amount of
information coming from the flanking markers). Al-
though removal of uninformative pairs from a VC analy-
sis would seem to be warranted, in practice it may be
difficult to decide which relative pairs to remove if the
pairs are not completely uninformative, since this would
involve choosing some potentially arbitrary threshold
for removal, as pointed out by Schork and Greenwood
(2004). Indeed, some pairs may show high informativity
in some regions of the genome and low informativity in
other regions (even on the same chromosome) and there-
fore would presumably be preferably retained for analy-
sis of some regions and not for analysis of other regions,
leading to a somewhat complicated removal strategy.
Perhaps a better solution for VC analysis would be to
develop improved statistical methodology in order to
produce test statistics that are less affected by the treat-
ment of uninformative or partially informative pairs.

There is a bewildering variety of software packages
available for linkage analysis of qualitative and quanti-
tative traits, as well as a number of different proposed
test statistics. It was not possible in this investigation to
exhaustively investigate every test statistic and software
implementation. It would certainly be of interest to ex-
amine the behavior of other test statistics, such as those
proposed by Forrest (2001) and Sham and Purcell (2001).
It would also be of interest to examine other software
implementations for the statistics examined here, such
as implementations of H-E, mean test (NPL) and MLS

procedures available in the SAGE (2002) package, and
implementations of VC methodology in the packages
SOLAR (Almasy and Blangero 1998) and ACT (Amos
1994; Amos et al. 1996). It would also be interesting to
examine the performance of the various statistics when
applied to family structures other than sib pairs (for
statistics that are defined for such structures).

Nevertheless, even for the simplified situations con-
sidered here, the conclusions from this investigation are
that the bias problem noted by Schork and Greenwood
(2004) is highly dependent on the test statistic used. Many
of the test statistics available in standard packages for
linkage analysis of qualitative or quantitative traits are
not, in fact, affected by the bias problem. A few test
statistics—most notably the NPL and, to a lesser extent,
the Aspex-MLS and H-E statistics—are affected by the
bias, and results obtained using these methods might be
worth revisiting to see if greater power can be obtained
by eliminating or downweighting uninformative relative
pairs or by using a different test statistic. In particular,
use of the statistic (Kong and Cox 1997) would ap-Z lr

pear to always be preferable, in comparison with the pre-
viously proposed NPL statistic. For quantitative traits, the
new regression-based method of Sham et al. (2002) ap-
pears to be less affected by the bias problem than other
methods, although other methods may still offer some
advantages with regard to power and/or robustness. Al-
though VC procedures do not appear to exhibit bias,
the results in any given analysis can vary, depending on
whether uninformative pairs are retained or removed;
so, for these procedures, it might also be worth consid-
ering removal of uninformative pairs. However, use of
a more efficient analysis cannot compensate for an in-
herent lack of information. Studies in which many in-
dividuals are found to be uninformative would probably
be most improved by use of a denser, more informative
(but therefore undoubtedly more expensive) marker map.
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